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ABSTRACT
Since its publication in 1978, Feigenbaum's predictions of the onset of
turbulence via period-doubling bifurcations have been thoroughly borne out
experimentally. In this paper, Feigenbaum's theory is extended into the regime in
which we expect to see fully developed turbulence. We develop a method of
averaging that imposes correlations in the fluctuating system generated by this
map. With this averaging method, the field variable is obtained by coarse—graining,

while microscopic fluctuations are preserved in all averaging scales. Fully

developed turbulence will be shown to be a result of microscopic fluctuations with
proper averaging. Furthermore, this model preserves Feigenbaum's results on the
physics of bifurcations at the onset of turbulence while yielding additional physics
both at the onset of turbulence and in the fully developed turbulence regime: with

this method of averaging,

1) the observed smaller ratio of power spectra of successive bifurcations
than that predicted by quadratic-maximumn maps;

2) the manifestation of a Kolmogorov spectrum, with a slope slightly
flatter than -2 beyond the onset of turbulence;

3) intermittency in the time series in the regime where it is not observed

by these maps without averaging; and

4) a fractal dimension of about 6-10 in the fully developed turbulence

regime.



A number of phenomena in nature, as a universal characteristic, have complex
microscopic behavior that underlies macroscopic manifestations. One is the critical
phenomenon, another is fully developed turbulence. In these problems, microscopic
fluctuations average out when larger scales are considered and the continuum limit
is achieved by averaging over larger and larger scales.

The simplest example one can use to study this passage to the continuum limit
is hydrodynamics cast in a microscopic framework. The standard method of
averaging atomic or molecular fluctuations yields the classical hydrodynamic
equation. But a new method of averaging is required if we are to treat properly the
case in which the fluctuations persist out to the macroscopic scale, the scale on
which macroscopic measurements are made.

In critical phenomena, a renormalization-group technique was developed to
handle the physics of many sca.les.1 In turbulence, because of the lack of formal
theories, we propose to approach this problem phenomenologically. We assume that
fully developed turbulence is a macroscopic manifestation of microscopic chaos
(fluctuations). We begin by assuming some deterministic model of fluctuations
whose details are unimportant provided that it has the following properties:

1)  The representation of the fluctuations can be extracted from the field
equations of the dynamical systems. This representation as function of time is
completely deterministic. For example, the fluctuations can be represented

by a time evolution recursion relation.

2) The representation is sufficiently nonlinear to guarantee significant
coupling between all wave components so that solutions cannot be linearly

superposed.

3) The dynamical equations manifest many field modes that are excited,
and even in the mean field limit, in each region however small, the field
fluctuates significantly with a kind of chaotic motion that leads to a high
degree of chaos in the fluctuations.



4) On the smallest time scale or in the smallest region the fluctuations are
large. At larger scales, the effect of the fluctuations become smaller and
smaller until we reach a scale at which they become negligible. However,
there is no physical limit in which these fluctuations vanish completely.

In this paper, we build a model that satisfies the above criteria. Microscopic
fluctuations are proposed to be governed by a quadratic-maximum map (we use the
logistic map, which satisfied properties 1 and 2). We develop a method of averaging
that imposes correlations in the fluctuating system generated by this map. With
this averaging method, the field variable is obtained by coarse-graining, while
microscopic fluctuations are preserved in all averaging scales. Fully developed
turbulence will be shown to be a result of microscopic fluctuations with proper
averaging. Furthermore, this model preserves Feigenbaum's results on the physics
of bifurcations and the onset of turbulence while yielding additional physics both at
the onset of turbulence and in the fully developed turbulence regime: with this
method of averaging,

1) the observed smaller ratio of power spectra of successive bifurcations

than that predicted by quadratic-maximum maps;

2) the manifestation of a Kolmogorov spectrum, with a slope slightly
flatter than -2 beyond the onset of turbulence;

3) intermittency in the time series in the regime where it is not observed

by these maps without averaging; and

4) a fractal dimension of about 6-10 in the fully developed turbulence

regime.

Recent discoveries of F‘eige:nbam.rn2 on the onset of turbulence provide a firm
foundation upon which we build our model of fully developed turbulence.
Feigenbaum approaches turbulence not from the classical point of view, but rather

starts by observing that given initial conditions that are infinitesimally different,




wildly different outcomes are possible, that almost any nonlinear system exhibits
chaotic behavior. The starting point is the assumption that a deterministic
quadratic-maximum map has, enough nonlinearity that it describes microscopic

fluctuations. One such map is the logistic map,
fEum_1 =Xun(1—un) (1)

where u denotes the fluctuating quantity controlled by a stress parameter . When
N is suitably varied, the system described by u changes from simple to chaotic.
More precisely, for some range of the parameter value, the system exhibits an
ordei'ly periodic behavior; that is, the system's behavior reproduces itself every
period of time T. When \ is increased further, the sysiems requires two intervals of
T to repeat itself: the period of the system has doubled. As \ is increased still
further, the period continues to successively double up to infinity. Denoting by }‘m
the value of the parameter at which the period of the system doubles for the mth

time, Feigenbaum found that }‘m converges to km for large m:
-m
Xo - }"m a b

with & = 4.6692...., a universal value. This universality has been repeatedly
confirmed experimentally.3'4's

In spite of the success of this theory, the problem of fully developed
turbulence has not been completely understood from this picture. The simplest
unanswered question raised by Feigenbaum's work is why the Fourier spectrum is
chaotic and flat in frequency when the stress parameter \ reaches its maximally
chaotic value of \ = 4. Experimentally the Kolmogorov spectrum is slightly flatter

than - 2 for this type of turbulence.ﬁ"7



Another question is the discrepancy between the predicted and measured ratio
R of the power spectra of successive harmonics at the onset of turbulence, \ = 'Km .
The t.l'u.aory2 predicts R =~ 43 while several experimental data8 yield much smaller R
=7 to 12. |

To expand the theory developed by Feigenbaum into the fully developed
turbulence regime, we develop a new method of averaging the fluctuations
generated by the quadratic-maximum map. We cast the logistic map a microscopic
map which describes the fluctuations of turbulent systems in a microscopic scale.
We impose an averaging scheme onto these microscopic fluctuations to bring the
systemn into macroscopic domains. This method of averaging is an analog of of the
coarse-graining technique in critical phenomemw..1 Coarse-graining is a method of
imposing macroscopic correlations into microscopic fluctuations. It transforms a
system from a discrete state to a near-continuum one. In the Ising model, for
example, discrete spins become essentially continuous after coarse-graining as the
first step of a Kadanoff transformation. Suppose we have block spins each of which
can assume two values, +1 or -1. We combine 8 blocks to form a new block. The
new block spin, i.e., the mean of 8 old spins, can assume one of the nine values (t1,
tg-, *g_' 0). Coarse—graining degrades (but does not completely destroys) the

discreteness of the system. In the following sections, we will discuss the details of

our model.

1. A NEW METHOD OF AVERAGING MICROSCOPIC FLUCTUATIONS:

Our method of coarse-graining was recently introduced by M. Pound and the
author9 to average out microscopic fluctuations in a lattice-gas automation in order
to obtain the macroscopic velocity fields. This was done in spatial configuration, as
in the Ising model. For time series, we employ the same technique as an

one-dimensional analog of the cellular automata coarse—graining.




Suppose nature': fluctuations are sufficiently modeled by the microscopic
fluctuations u of the logistic map f = L Xun(l—un). The first N terms of the
time series are Uy, Uy el Call v the average value of consecutive u's of time

length £ = mAt, where At is the time lapse between consecutive microscopic

fluctuations, conveniently set to be At = 1:

M M
1 1 m
v = 3 Z u. = z f (u ) (2)
1 M 1 0 M mel o]

where ™ (uo) is the value of f after m operations on the initial value U, In our
notation, Jma.x =N-M+1.

The next averaged value v, is then obtained by repeating the averaging
process with a shift of one unit of n. The physical reason for this choice of

averaging will be discussed in the subsequent section.

M+1

1 1 m
v, == u = > I ffu.) 3)
2°M % T M &, o
The last term is:
v -3 lg uw =1 1; fM ) 4
N-M+1= M = L (4)

n=N-M+1 * M moN-Ms+1

The new time series of the averaged fluctuations can be obtained by successive
averaging. In the case of cellular atomata, u can represent, for example, the
microscopic velocity of each point on the lattice. If we carry out a spatial average
along the lines first described, we obtain the observed velocity field, as mentioned

.9
earlier.



In this model, we start with a deterministic equation (the logistic map, for
example) where all iterations are deterministic. The values:of all the velocities v's
are also deterministic, with explicitly known functional forms written in terms of
the initial condition u,.

This special method of averaging deserves some explanation. The most
common method of averaging, performed by other workers in cellular automata and
related fields, uses the maximum shift of An = M+1, rather than An=1. This means,
for example, in the case of Fig. 1, vy = % (u1 +U, + Uy + u4) and v, = 1— (u5 + U+
u, + u8). rather than v, = i— (u2 + Uy + U, us) as in our method. For the shift An =
M+1, if the Fourier transform of the u's is flat after averaging, the Fourier
transform of the v's remains flat. However, in our method, when the shift of An =1,
averaging the Fourier transform of the averaged v's approaches a slope slightly
flatter than - 2. This was observed in our cellular automat:on.9 In our method, the
length { = MAt is actually the imposed correlation onto the microscopic fluctuation
systemm. The shift of An = At = 1 guarantee the preservation of microscopic
fluctuations while the mean field v is obtained by averaging u's. For large { = M

(that is, At = 1), the effect of this microscopic fluctuation becomes small; as £ is

larger, this effect becomes smaller. But there is no limit in this discrete case in

which the microscopic fluctuation vanishes completely. Figure 2 illustrates this

type of physics. The chaotic fluctuation is generated from the logistic map with \ =
4 (Fig. la). Figure 1b shows the averaged V's for M = 5S0. The "trends" seen in
these figures reflects the correlation imposed by this method of averaging. The
microscopic fluctuations relative to the mean field decrease with increasing M. The

physics of this averaging method is now investigated.




2. RESULTS OF AVERAGING RANDOM FLUCTUATIONS.
This work on random fluctuations is recently introduced by M. D. Feit and the

author.lo Consider a random time series fj = f(tj). j=1 to N, with discrete Fourier

transform g(w):
g(0) = £ fj expliot)) ()
J

Here |[g(w)] 2 is the power spectrum; its ensemble average is independent of
frequency o for a white noise source. We attempt to measure this process on the
macroscopic level with a physical device of limited temporal resolution. Suppose
the impulse response of the device is W(t), then the measured signal will be F(t) =
f(t)*W(t) with power spectrum ll’-‘(m)l2 = ]g(w)IZIV(w)IZ. Here, the star denotes

| convolution and V(w) is the Fourier transform of the impulse response W(t).
The simplest possible case is that of a running average over a time interval
MAt ie: W(t) = 1 for 0 < t < MAt and 0 otherwise. In this case, the measured power

spectrum is proportional to
2 . . 2
|V(w)]© = (sin «T/2 / sin wAt/2) (6)

This function is plotted in Fig. 2a for N=2048 and a window of M=250 At. Fig. 2b is
for M = 500. It is seen that the spectrum displays an apparent power law behavior in
the high frequency range with exponent slightly flatter than -2. The apparent
leveling at the highest o is due to the finite spectral width and periodicity of the
finite Fourier transform. The approximate slope of -1.9 is nearly independent of the
size of the window as long as the window M is small relative to N. Physically, we

can think of MAt as a correlation time. Then statistically relevant results require M



<< NAt. The continuum limit should be approached when At << MAt << NAt. For a
smaller M, the effect 'of discreteness will be manifested.

This result can be understood by taking the logarithmic derivative

deniV()1%/den w.

d2n| V()| d2no =
The slowly varying envelope seen in Fig. 1 is due to the denominator of Eq. 6. The
resulting slope varies from -2 to about -1.56 as wAt varies over o and w; the average

value is —1,86. This result is very suggestive in light of experimentally deterrnined

power spectra of turbulent systems on the one hand, and fluctuations near a critical
point on the other (the critical exponent for the correlation function is -2 + n where
n = .14 experimentally).

Assuming isotropic turbulence, Eq. 7 can be used to calculate the correlation

spectrum G(K) parameterized conventionally as:
Glk) ~ k21 =18

For infinite system, n = O (as in mean-field theory of continuum system). For

discrete-finite system, n can be calculated from Eq. 7.

s

M .
2 (5~ Sin )
el My V. (8)

'n_
S).ng—/I

This is exactly the logarithmic correction. For M = 50 (see Section 2), n = .14 and

the "Kolmogorov" slope is — 1.86.
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As a demonstration of these ideas, we constructed a finite stochastic time
series of N = 2048 values with a randorn number generator. The power spectrum of
the se_ries was found to be flat as expected. The "measured" time series was
generated by using a running average of width 200 At. The trend can be made more
evident by performing a running average in frequency as well; this has been done in
Fig. 2 over a frequency width of 20 Aw. The slope of the spectrum is consistent with
-1.9 approximately.

We conclude that the slope of -2 + nn where n is a small positive correction is
characteristic of a discrete process with limited time correlation, in distinction to
the slope of -2 characteristic of a continuum. Furthermore, the power law
spectrum is a natural consequence of finite spatial or temporal resolution
measurements of finite time series. The imposition of correlation through finite

resolution observation is enough to lead to power law spectra.

3. RESULTS OF AVERAGING CHAOTIC FLUCTUATIONS.

We now make use of this method of averaging to study the physics of chaotic

fluctuations.

We apply this coarse-graining to time series generated by the logistic map (Eq.

1). Figure 3 shows the Lyaponov exponent o for various values of \ in (1):
o) =I\I—ND

lim 1 df
N} an | u, | (9)

We will study the physics produced by marching through the exponent o.
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4.. MODIFICATION OF RATIO OF SUCCESSIVE BIFURCATION POWER
| SPECTRA AT\

Period doublings occur in the interval 3 < N < 3.56980. Between \_ =
3.56980 and \.= 4, there are several windows of ¢ < 0 where periodicities of
different periods are observed. Figures 4a to 4e are the power spectra of the
logistic map at km for the running time average of width M = 1 to 300 respectively,
(At = 1). The ratio R of the power of the main frequency F and its first harmonic
F/2, R = P(F)/P(F/2)) versus the running time average M is shown in Fig. 5. The
value of R is invariant as long as t = ZnAt for n = 1, N as expected because of the

bifurcation nature in this range of \. The interesting result is scen when M # 2",

The ratio R can be shown to decrease with M as
R« M2 (10)

Thus, the ratio of successive harmonics decreases as the time response (window) of
the measuring probe increases. To be consistent with Libchaber's da.ta,10 we use M
~ 50. Historically, the theoretical prediction2 of Feigenbaum R 2™ 43 (8.2 db) is the
amplitude ratio and the experimental da.t‘.a8 of R = 8.2 db is the power ratio (square
of the amplitude). This is therefore not an agreement between predictions and the
data, as commonly believed. Only after we averaged out the data generated by the
logistic map was this discrepancy remedied. We found that for M =50 the theory

and experimental data agree.

S. MODIFICATION OF THE SLOPE OF THE POWER SPECTRA AT\ = 4.
At '\ = 4, if we want to claim that fully developed turbulence is a consequence

of period doubling bifurcations, we should expect the power spectrum to mimic the
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approximate -1.9 power. Figure 6a shows the power spectrum of the u's generated
by Eq. 1 with N\ = 4. Without coarse-graining, it is flat as expected from the
stochastic né.ture of the logistic map.

We wiil see now how this new method of averaging change the nature of the
outcome of the power spectra of the logistic map at N = 4. Figures 6b to 6d show
the power spectra with a time averaging window M = 2 to 20. We can see that the
high frequency is decreased as a consequence of this time average.

When M = 100, the power spectrum is almost saturated to a power law with the
slope approximately -1.9 in the high and medium frequencies range (Fig. 6e).
Increasing values of M to 300 the power spectrum is still approximately saturated as
a power law of -1.9 (Figs. 6f). This result coincides with various experimental data
on fully developed turbulence in the inertial range.

We now want to stress a basic point: there is perhaps no continuum limit for
turbulence. By coarse-graining the microscopic system with larger M, the
macroscopic variables still retain fluctuations. The fluctuations do not vanish in any
limit of M. The averaging process is irreversible: Once the averaging is done, the
fluctuations are unrecoverable. We believe that any attempt to understand fully
developed turbulence from hydrodynamic equations where fluctuations are ignored
will suffer the same fate as Landau's theory of critical phenomena.

In experiments, the frequencies are averaged out according to the resolution
of the frequency analyzer. To simulate this effect, we average the frequencies with
a width of 100 bins and Fig.7 shows the same result as Fig. 63 with Aw = 100. The

power law spectrum is consistent with fully developed turbulence data.
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6. INTERMITTENCY IN THE TIME AVERAGED LOGISTIC MAP.

In real fluids, between laminar and turbulent regimes, there is a phenomenon
called intermittency.8 We use the logistic map at this regime to étudy the
intermittency phenomenon, and we choose \ = 3.62 (see Fig. 3). The time series is
represented in Fig. 8a. No intermittency is indicated. This is also shown in a
magnified version, Fig. 8b. However, when the series is time averaged with a
window M = 67 definite intermittency is observed. This shows a definite long time
(large scale) correlation of the map (Fig. 9). The same is true for any other
arbitrary value of the time window M, say, M = 299. (Fig. 10).

In another regime near the fully developed turbulence, N = 3.857, we studied
~ the behavior of this type of intermittency. Figures 1lla to 1lle show the

intermittency phenomenon for various values of M. Thus, this phenomenon is global

and robust, i.e., independent of X\ and m for X > 0.

7. INCREASE OF FRACTAL DIMENSION BY AVERAGING

Data of fully developed turbulence shows fractal dimensions of 6-10, much
larger than DF =1 as calculated from the logistic map at \ = 4.

To calcula.t:e11 DF' we generate a time series of the logistic map at \ = 4, to

get Xn(n=1, N). Webuild a Dimb dimensional space vectors Vn with:
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imb

imb * 1

In this new space, we calculate the Euclidean norms n's. For example, when

imb = &

2 2
21=J(x.1—x2) r Xy - %)
8, = A0 X2 s (X, - X2 (11)
2 = VK- K 3~ %
For a given sphere of radius R, we count the number of 2's that are less than R. We
postulated that this nummber L(R) obeys:
L(R) ~ RDF (12)
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For the logistic map at \ = 4, using this method and for all Dimb between 2 and 50,
we found DF = 1.0 (Fig. 12). When this series is time averaged (say M = 50) the
fractal dimension satﬁrates with the imbedding dimensions. We found with M = 50,
DF ~ 8 + 2, consistent with experimental data.

In conclusion, we have developed a method of averaging that can be used to
understand data of fully developed turbulence.

At the onset of turbulence, Feigenbaum has shown that turbulent systems
manifest period doubling bifurcations with universal parameters § = 4.669 and a =
2.503. This prediction, which describes the modern approach to turbulence, has been
observed in various experiments.

However, the theoretical prediction of the ratio R of the power spectra of
successive bifurcations is much higher than the measured data. Furthermore, if one
attempts to extend this theory to the fully developed turbulence regime one gets a
fractal dimension DF = 1, the slope of the power spectrum S = 0, and one predicts no
global intermittency in the regime between the onset and fully developed
turbulence. Experimentally, DF = 6 to 10, S = -5.3 and the global intermittency is
observed in various systems.

Influenced by our calculations with the Lattice Gas Cellular Automaton and by
renormalization group methods, we developed a method of 'averaging' the nonlinear
fluctuations generated by the quadratic maximum map used by Feigenbaum. With
this averaging scheme we achieve three important results. First, we recover the
universal; values of 8§ and a. Secondly, the value of R is now consistent with
Libchaber's experimental data. Finally, we obtain the observed fractal dimension
(DF =~ 6-10) and a calculated power spectrum with a slope S approximately equal to
-5/3, consistent with Kolmogorov and with experiments. The global intermittency is

also recovered. This new work provides a theory that bridges the classical and the




- 16 -

modern treatments of turbulence. | Our predictions are consistent with e_xisting data
at the onset of turbulence and in the fully developed turbulence regimes.

What we have discovered here is that, in the microscopic scale, nature
manifests a brownian motion turbulence. But when a measurement is made onto the
microscopic scale to bring the system into the macroscopic scale, the physics will
change drastically in terms of intermittency, steep Kolmogorov slope and large

fractal dimension.
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FIGURE CAPTIONS

Time series of the logistic mapforA =4, M =1
Time series of the logistic map for A =4, M = 50
The power spectrumn of Equation (6) with M = 250.

The power spectrum of Equation (6) with M = 500. The dashed line is
for P(w) ~ 0—>/3,

The Lyaponov exponent versus \ of the logistic map.

The power spectrum of the logistic map at A\ = 3.56980 with M = 1.
The power spectrum of the logistic map at '\ = 3.56980 with M = 5.
The power spectrum of the logistic map at \ = 3.56980 with M = 8.
The power spectrum of the logistic map at \ = 3.56980 with M = 128.
The power spectrum of the logistic map at \ = 3.56980 with M = 300.

The ratio R of two successive peaks of the power spectrums as a
function of the averaging window M.

The power spectrum of the logistic map at A = 4.0 and M = 1.
The power spectrum of the logistic map at A =4.0and M = 2.
The power spectrum of the logistic map at A = 4.0 and M = 5.
The power spectrum of the logistic map at A = 4.0 and M = 20. "~
The power spectrum of the logistic map at \ = 4.0 and M = 100.
The power spectrum of the logistic map at N = 4.0 and M = 300.

The power spectrum of the logistic map at A = 4.0, M = 300 and the
frequency averaging of 100.

The time series of the logistic map at A = 3.62 and M = 1.

The time series of the logistic map at A\ = 3.62 and M = 1 (expanded
horizontal scale).

The time series of the logistic map at \ = 3.62 and M = 67.
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The time series of the logistic map at \ = 3.62 and M = 299.

The time series of the logistic map at X = 3.875 and M = 5 (¥,

.0438).
The time series of the logistic map at N = 3.875 and M = 6 (X,
.0438).
The time series of the logistic map at \ = 3.875 and M = 4 (X,
.0438).
The time series of the logistic map at N\ = 3.875 and M = 10 (X,
.0438).
The time series of the logistic map at X = 3.875 and M = 50 (X,

.0438).

The fractal dimension and L(R) vs. R plot for the logistic map at \
4.0.

The plot of L(R) vs. R for the logistic map at \ = 4.0 and M = 50.
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